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Most of us are familiar with the Excel graphing feature that puts a trendline on a graph. For example,
some experimental data of temperature versus time are shown in Figure 1. The trendline was inserted
as follows: Right click on data on chart, Add trendline, Linear, Display Equation on chart, Display R-
squared value on chart. The trendline function, however, does not give us the value of the variances
that are associated with the slope and intercept of the linear fit. If we wish to report the slope within a
chosen confidence interval (95% confidence interval, for example), we need the values of the variance
of the slope, s2,. Excel has a function that provides this statistical measure; it is called LINEST. In this
handout, we give the basics of using LINEST.

70
| y=0.0439x + 22.765
65 —+
I R2=0.9977
o L
& L
5 L
© 60 +
(]
g .
£ i
'q_) -
55 +
L —Temperature Response
. —Linear (Temperature Response)
50 ! ! ! ! I ! ! ! 1 I ! 1 1 1
700 800 900 1000

time, s
Figure 1: Temperature read from a thermocouple as a function of
time. The trendline feature of Excel has been used to fit a line to
the data; the equation for the line and the coefficient of
determination R? values are shown on the graph.



Excel Array Function LINEST

The MS Excel function LINEST carries out an ordinary least squares calculation. For the data shown in
Figure 1, we apply LINEST as follows (instructions are for a PC):

1. Select a blank range of five rows by two columns (10 cells total) to store the output of the
function; we choose B1:C5 as shown shaded in Figure 2.

2. Click on Formulas and then “Insert Function.”

3. Inthe Insert Function window, choose category "Statistical" and function "LINEST;" then click on
OK.

4. Select the y and x data ranges; for “Const,” enter TRUE (TRUE=calculate an intercept rather than
having zero be the intercept) and for “Stats,” also choose TRUE (TRUE=list the error estimates);
click on OK.

5. Specify that LINEST is an array function by selecting the formula in the entry field and pressing
CTRL-SHIFT-ENTER (Note: the Analysis ToolPak-VBA must be activated before this step; often
this is already the case in later editions of Excel, but for Excel 2007 you may need to do this
manually). The ten selected output cells will populate with statistics associated with the fit as
labeled in Figures 2 and 3 and discussed below.
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Figure 2: Following the instructions in the text, we fill in the function arguments of LINEST as shown. After

clicking on OK there is one final important step: highlight the function call
“=LINEST(B12:B265,A12:A265,true,true)”and press CTRL-SHIFT-ENTER.




A B C D
slope, m| 0.043931479| 22.76492191 |intercept, b
std dev of slope| 0.000131455( 0.111823909 |std dev of intercept
R’=555/SS;| 0.997748762| 0.153614504|s, ,, std dev of y
Fisher F statistic, SSp(n-2)/5Sg| 111686.4212 252 |degrees of freedom, n-2
regression ss (55g); explained variation| 2635.510932( 5.946548808 |errors ss (S5¢); unexplained variation

Figure 3: After specifying that LINEST is an array function, the ten cells
B1:C5 populate with the statistics shown. The labels are not provided by
Excel; symbols are defined in the text.

Meaning of LINEST Results

LINEST performs an ordinary least squares calculation (Wikipedia, 2014b). The least squares process of
solving for the slope and intercept for the best fit line is to calculate the sum of squared errors between
the line and the data and then minimize that value. In ordinary least squares it is assumed that there
are no errors in the x-values. For other assumptions of this analysis, see Appendix A. See the literature
(Montgomery and Runger, 2014; McCuen, 1985) for detailed derivations; we give a brief discussion
here.

The values (x;,y;) are a set of n data pairs to which we wish to fit a line; y = (X1, y;)/n is the mean
value of the y; values, and the linear model we are fitting is §(x) = Mx + b. To explain the values

returned by Excel, we begin by defining three sums of squares: SS,,,, SSg, and SSp.

Total sum of t ~ (1)
squares S§Sr =588,y = Z()’i - y)?
i=1

n

Error Sum of SSp = Z(yi - 9)? (2)
Squares i=1

Regression

Sum of SSp = SS; — SSg (3)

Squares
§S,y is the sum squared error between the data and the mean of the data ¥; SSg is the sum of squared
error between the data and the line § = #iix + b; SSj is the difference between these two and
represents the portion of the total sum of squares that can be explained by the linear model. In
ordinary least squares we minimize SSg. Two more useful sums of squares that appear in the least-
squares formulas and LINEST results are

N (4)
SSxx = Z(xi - f)z
i=1
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where ¥ = (311 x;)/n is the mean value of the x; values. SS,, is directly calculable with the Excel
function DEVSQ(xrange) and SS,,, is available with the Excel function DEVSQ(yrange).! More is said
about the various sums of squares below.

We seek to fit the n data points (x;, y;) to the linear model given here:
y=mx+b (6)

The ten statistics calculated by LINEST are (note that the order used below differs from the order of
Excel’s ten LINEST cells):

1. m, Least Squares Estimator of the Slope — the slope of the ordinary least squares best-fit line;
also available with the Excel function SLOPE(yrange,xrange).

n¥is: %y — Gty x)Eis1 ¥ _ SSay

m = >
n¥r, x? — (I, x) SSxx

(7)

The two calculation formulas given in equation 7 may be shown to be equivalent by
straightforward algebra.

2. b, Least Squares Estimator of the Intercept — the intercept of the ordinary least squares best-fit
line; also available with the Excel function INTERCEPT(yrange,xrange).

(Z?:1 xi)Z(Z?:1 yi) - (Z?:1 xi)’i)(Z?:1 xi)
nSp, 1 — (S, x)”

The two calculation formulas given in equation 8 may be shown to be equivalent by
straightforward algebra.

b=

=y-mx (8)

3. n —p, Least Squares Degrees of Freedom. There are n data points, and p = 2 regression
parameters. Before performing the least squares calculation we have n degrees of freedom.
We use two degrees of freedom in calculating the slope and intercept, leaving n — 2 degrees of
freedom in subsequent calculations.

4. s, Standard deviation of y(x) (square root of the variance s, of y(x); also available with the
Excel function STEYX(yrange,xrange):

1 \v SS ()
sy =( )E(y'—?')2= £
Yr o \n-2 - Lot n—2
l=

1SSxy is not directly available in Excel but may be calculated as follows: SUMPRODUCT(xrange,yrange)-
COUNT(xrange)*AVERAGE(xrange)*AVERAGE(yrange).



The variance is defined as the error sum of squares divided by the degrees of freedom. This
quantity is used in constructing confidence intervals and prediction intervals (error bars) for
values of y; see the discussion in the section Predictions with the Model.

5. S, Standard Deviation of Slope, 7 (square root of s2, the variance of 7).

2 S (10)
™SSk

where sf_x is the variance of y(x) (see equation 9). The formulas for s2, in equation 10 and for

55 in equation 14 (below) may be derived from a propagation of error calculation based on
equations 7 and 8 (see Appendix B).

To construct confidence intervals around the calculated 7 and b, we use the t-distribution and
n — 2 degrees of freedom (Montgomery and Runger, 2011; p 421). Note that for degrees of
freedom greater than or equal to 6, £y 925 n—226 = 2 (to one significant figure on error).

95% Confidence Interval on slope: M * tg 025 n-25m (12)
=m+2s, n—22=6) (13)

The value of t4, ,_, may be obtained from Excel with the call —T.INV(a/2,n — 2), where for
95% confidence @ = 0.05.?

6. sp, Standard Deviation of Intercept b (square root of s,f, the variance of B). Confidence intervals
on b are constructed with s, and the t-distribution with n — 2 degrees of freedom.

$2 = Syx Li=1 X 52 1_|_ x’ (14)

b nSS,, YX\n " SS,,
95% Confidence Interval on intercept: b + tg.025n_2Sp (15)
=h+2s, (n—2=6) (16)

The two versions of sg in equation 14 may be shown to be equivalent by straightforward
algebraic manipulations.

7. 7a)Total sum of squares SS; = SS.,,., (not given by LINEST but easily calculated from the LINEST
results by summing two quantities that are given, SS; and SSz). SSy is the total sum of the
squares of the difference between the data y; and the average y; it is a measure of the total
error made when assuming the y-data are constant and equal to the mean (equation 1 repeated
below):

= (17)
SSr = SSyy = Z(yl - 3_’)2
i=1

2The correct call is to the function “T.INT,” which in Excel returns a left-tailed inverse of the Student’s t distribution
(a negative number). The function “TINT” (without the period) also works, but this returns the two-tailed inverse
of the Student’s t distribution, which is positive and twice the value of the T.INT result.



10.

7b) Residual sum of squares of errors SSr—sum of squares of difference between the data and
the linear model ¥;; a measure of the error made in assuming the y-data are characterized by
the linear model. This is the leftover SS; variation that is unexplained by the model. When
SSg — 0, all the total error SS; is explained by the linear model, and we can conclude that the
linear model is a very good fit (equation 2 repeated below).

= (18)
SSg = ) (=90
i=1
Regression sum of squares SS, —the portion of SS that is explained by the model. SSy is
defined as (equation 3 repeated below):
SSR = SST - SSE (19)

See the coefficient of determination discussion (R?, equation 20) and the Fisher F Statistic
discussion (equation 21) for more uses of $Sg.

R? Coefficient of Determination—fraction of the variability of the y; accounted for by the linear
model:

_ explained error _ ﬂ _ SSr —SSg
total error SSt SSr

2 (20)

When the model is a very good fit, there is little deviation between the data and the model;
then, SSg —»0and R? = 1. Note, however, that if the model is a horizontal line, the model is

$ =y, and SSr is equal to SSg, and R? is zero. The coefficient of determination is a measure of
goodness of fit except when the data are nearly constant.

Fisher F Statistic—used in a test of the regression to see if using two parameters (slope and
intercept) is justified over using one parameter (y = y; i.e. zero slope and y = intercept). The F
statistic for a regression is calculated as the ratio of two quantities, the variance explained by
the model to variance unexplained by the model (McCuen, 1985; p191; Wikipedia, 2014a):

P "lack of fit" sum of squares/v;  SSp/v; (8Sr — SSg) (21)

n n - - 2
pure error” sum of squares/v,  SSg/v, Sy x

where v; = 1 and v, = n — 2 are the degrees of freedom for each of the sources of variation
shown. This ratio is the computed value of a random variable having an F (v4, v,) distribution
(another common population distribution; compare to the normal or Student’s t distributions)
with degrees of freedomv; = 1landv, =n — 2. If F > F_.;;, then using the linear model

(37 = mx + B) is justified (at the (1 — @)% confidence level) over using the model ¥ = y. F
corresponds to the cumulative distribution function of the F(v4,v,) distribution with a equal to
the desired confidence level and degrees of freedom v; and v,. See the literature for more on
the Fisher F statistic (Wikipedia, 2014c; McCuen, 1985).



Predictions with the Model y = mx + b

In equations 13 and 16, we gave the 95% confidence intervals for the two model parameters 7 and b.
These confidence ranges are appropriate to use in error propagation calculations when the model
parameters 7 and b are used directly in subsequent calculations.

When the model equation is used to estimate values of y at a chosen value of x, different error limits
are appropriate. The two most common cases are discussed here.

1.

Estimate the best value of y at a chosen value of x. The best value of y at any point will be the
mean of all possible observed values of y at that point. Let the chosen value of x be x,, and the
best estimate of y at that point be y,,, which is given by

Yp = Mx, + b (22)

The variance for y,, is calculated from equation 22 and an error propagation calculation (see
Appendix B), with the complication that the slope and the intercept are not independent
quantities, and thus there is a nonzero covariance between i and b. The result for the variance
of the mean value of y at x,, is

Vari f th )2
e (LG s
p Y\ n SSyx

(Recall that SS,.,, may be calculated with the Excel call DEVSQ(xrange).) The appropriate
confidence interval for the mean value of y at x,, is obtained from the standard deviation of the
mean value along with the t-distribution with n — 2 degrees of freedom (Montgomery and
Runger, 2011; p 422):

Confidence interval
for the mean value of
yatx,

(fhxp + 13) t ta/on-25yx (24)

Equation 24 is the appropriate interval to use for error bars on y-values obtained from the least
squares best fit (Figures 3 and 4). Note that the error bars are narrowest near the center point
of the regression (X, y) and fan out towards the ends. This reflects the fact that uncertainty in

the slope makes values at the ends of the x-range less certain than points near the center.

Estimate the predicted new value of y at a chosen value of x. The n experimental values

(x4, y1), (X2, ¥2), (x3,V3), ... (Xn, V) Were used in the calculation of the least squares results. If
an additional point (x,, y;,) is now taken, its expected value is just the mean value of y at the
desired x, y, = T’ﬁxp + b. Thus, the expected values of both the mean value of y at x,, and of a
new value of y at x,, are the same.

The uncertainties in these two quantities at x,, are not the same, however. The mean value of y
at x,, can be quite well known: as n increases, both terms in equation 23 go to zero, making the
variance go to zero as well. Taking more data makes us more certain of the mean response at
Xp-
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Figure 3: A portion of the data from Figure 1 is shown along with (inner pair of green
lines), the 95% confidence interval on the mean values of y (temperature) at each

value of x (time). The outer pair of lines (purple) reflect the 95% prediction interval
on new values of y at each value of x.

A new value of y at x;, will be subjected to the random variations of the process being studied,
and thus will always be more uncertain than the mean response. The correct calculation of the
variance of a predicted new value of y at x,, is (Montgomery and Runger, 2011; p 423)

Variance of the

_\2
predicted new value 2, (1 + 1 + (xf,gs;x)) (25)
of yatx, n xx

Note that as n increases, the variance does not go to zero, but rather goes to sﬁ_x. The
prediction interval for the new value of y at x,, is given by the t-distribution with n — 2 degrees

of freedom; this interval is appropriate for showing the expected uncertainty in this prediction
(Montgomery and Runger, 2011).

Prediction interval for
the new value of y at
X

2
“ 1 _ 5
(fx, +b) + tajam—2Syx |1+ - + M (26)

p SSxx
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Figure 4: Confidence intervals of the mean indicate how well we know the average value of y at
every x; prediction intervals for the next value of y indicate the expected span of the data. Usually,
as is true here, most of the data will fall in the 95% prediction interval of the next value of y. Data
shown are for viscosity of star branched polylstyrene at 379°C, MW=333 kg/mol; from G. Kraus and J.
T. Gruver, J. Polym. Sci. A, 3, 105 (1965).

As n goes to infinity, the terms under the square root go to one and the t-distribution goes to
the normal distribution. Note that the error bars for new values of y, like those on the mean
values of y, are narrowest near the center point of the regression (i, ¥) and fan out towards the
ends. The prediction intervals for a new value of y are wider than the confidence intervals on
the mean values of y (Figures 3 and 4).
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Appendix A: Assumptions of Ordinary Least Squares

In developing the equations for linear regression the following assumptions are made (Montgomery and
Runger, 2011; Wikipedia, 2014b):

1.

Weak exogeneity. This assumption is that there are no errors in the x values, only in the y
values. In Figure A-1 we show the difference between assuming y-errors only versus allowing
errors in both x and y. Methods exist for the case where both errors are accounted for (Reed,
1989; Fuller, 1987)

Linearity. The mean of the response variable y is a linear combination of the parameters (slope
and intercept ) and the predictor variable (x).

Constant variance S)z/'x (homoscedasticity). Constant variance implies that different response
variables (y;) have the same variance in their errors, regardless of the values of the predictor
variable (x;).

Independence of errors. The errors of the response variables are uncorrelated with each other,
that is, the errors in each of the values of y; are not correlated (no covariance terms among the
i)

Lack of multicollinearity in the predictors (We cannot fit to x and 2x as two different predictor
variables in our model; there would be a redundancy if we did so.)

11
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Figure A-1: The ordinary least squares algorithm assumes that there are no errors in the x-values of the
data; the residuals of the response variable y are calculated as y; — ¥;, the vertical distance between the
point and the line (top). The shortest distance between the point and the line is the perpendicular
distance as shown in the plot on the bottom; for this case, errors in x are assumed to be present as well
(Reed, 1989; Fuller, 1987).
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Appendix B: Variance of a Function of Random Variables

For a linear function y of p variables x;,

Linear 4
functi _ _ _ (B-1)
unction f y = f(xl,xz, ...xp) = C1X1 F Xy + C3X3 .. CpXp = CiX;
i=1
the variance of the function is given by (Montgomery and Runger, 2011; p182):
VaT!ance of » b P
inear
2 _ 2 2 B-2
function f of = Z ctaf + ZZZ ciciCov(x;, x;) (B-2)

i=1 i<jj=2

where Cov(x;, x;) is the covariance of the variables x; and x;. If the variables are all mutually
independent, the covariance is zero. In error propagation usage of equation B-2, the covariance terms
may be nonzero if there are systematic errors causing the individual variables x; to be correlated.

For a general, nonlinear function y = f (x4, x5, ... X)), the equation for the variance of the function f is

Nonlinear (B-3)
function f y = f(x1, X2, . Xp)

Variance of LIS p P p 9

function f pr Ox; == 0x;/ \0x;

We can obtain the variance of a linear function (equation B-2) by straightforward evaluation of the
general variance equation (equation B-4) with equation B-1. We can obtain equations 10 (for s2) and
14 (for s?) from evaluation of equation B-4 with equations 7 (for 7t) and 8 (for b; the variables are the
y;; the x; are assumed constant).

To calculate the variances associated with the points (xp,yp), we begin with equation 22 (which is y,, =
mx, + 13) and the equation for the variance of a general function (equation B-4; f = y,(, x,,, b). Note
that we assume as always that x,, is known with certainty.

Mean
value of
y atx,

Yp = Mx, + b (B-5)

Variance

of mean dy 2 dy 2 dy 2 dy,\ (dy R BLE
valueof  s2, = (a?’i) sfn+<ﬁ> <0)+<a—g> s§+2<a—ﬁ’;> (a—;) covm by ®®
y at x, p

Note, that since 7 and b are both calculated from y;, ¥, ... ., they are correlated, and Cov(, b) is not
zero. It may be shown that the covariance of slope and intercept is given by (Montomery and Runger,
2011):
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Covariance of least
squares slope and
intercept

2 —_
~ S X -
Cov(r’fl,b) = ——( y ) (%) (B-7)
SSyx
Equation 23 (for variance of the mean value of y at x,,) follows from equation B-6 with a few more
algebraic steps. Equation 25 for the variance of the predicted new value of y at x,, is obtained starting
from the expression for the error at the point (x,, y;,) (Montgomery and Runger, 2011; p423):

Error in prediction of

yatxp e =Yp — Iy (B-8)
Var(ep) = Var(y, — 9,) (B-9)
= Var(yp) + Var(j/p) (B-10)
2 2 1 (xp — f)z (B-11)
= Syx + Sy x E + W

The result in Equation B-11 matches equation 25.
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